AI w strategii transformacji cyfrowej 2025: 6 kluczowych trendów dla dużych firm

Spis treści

    Na początek kilka statystyk…

    Transformacja cyfrowa nabiera tempa – w 2025 roku aż 94% organizacji prowadzi różnego rodzaju inicjatywy cyfrowe​. W centrum tych działań coraz częściej znajduje się sztuczna inteligencja (AI). Ponad trzy czwarte firm już dziś korzysta z AI przynajmniej w jednym obszarze swojej działalności, a 83% przedsiębiorstw uznaje AI za strategiczny priorytet​. AI nie jest więc futurystyczną ciekawostką, lecz kluczowym czynnikiem przewagi konkurencyjnej. Jakie trendy AI powinny znaleźć się w strategii organizacji planujących rozwój po 2025 roku? Poniżej przedstawiamy najważniejsze z nich, istotne zwłaszcza dla liderów transformacji cyfrowej w dużych firmach.

    Globalne przychody z oprogramowania AI rosną wykładniczo, sygnalizując ogromne inwestycje biznesu w sztuczną inteligencję​. Szybki wzrost rynku AI idzie w parze z lawinowo rosnącą liczbą wdrożeń w firmach – zgodnie z badaniami McKinsey, 78% organizacji używa AI przynajmniej w jednej funkcji biznesowej​. Dla kadry zarządzającej oznacza to konieczność uwzględnienia AI w długofalowej strategii, aby nie pozostać w tyle za konkurencją. Coraz więcej liderów dostrzega ten fakt – niemal połowa deklaruje, że AI jest już w pełni zintegrowana ze strategicznymi planami ich biznesu​. Strategiczne podejście do AI, oparte na aktualnych trendach, staje się zatem warunkiem udanej transformacji cyfrowej po 2025 roku.

    AI in Digital Transformation

    1. Automatyzacja procesów (hiperautomatyzacja)

    Automatyzacja procesów biznesowych z wykorzystaniem AI to jeden z filarów transformacji cyfrowej. W dobie dążenia do operacyjnej doskonałości firmy sięgają po tzw. hyperautomation – łączenie wielu technologii (AI, uczenie maszynowe, RPA) w celu automatyzacji wszystkiego, co się da. Według Gartnera hiperautomatyzacja jest priorytetem dla 90% dużych przedsiębiorstw​, co pokazuje jak istotne stało się usprawnianie procesów za pomocą AI. Automatyzowane mogą być zarówno rutynowe zadania back-office (np. przetwarzanie dokumentów, raportowanie), jak i interakcje z klientami (chatboty, voiceboty).

    Przykładowo, algorytmy AI potrafią analizować dokumenty i wyciągać z nich dane w kilka sekund – coś, co manualnie zajmowało pracownikom wiele godzin. Systemy typu RPA w połączeniu z AI mogą samodzielnie obsługiwać procesy finansowe, kadrowe czy logistyczne, ucząc się na podstawie danych i usprawniając swoje działanie z czasem. 70% organizacji wskazuje upraszczanie workflow i eliminację manualnych czynności jako top priorytet w strategii cyfrowej​, a AI doskonale wpisuje się w te cele. Co więcej, szacuje się, że do 2026 roku 30% przedsiębiorstw zautomatyzuje ponad połowę procesów sieciowych (wzrost z <10% w 2023)​ – to dowód, że skala automatyzacji gwałtownie rośnie. Firmy inwestujące w AI-driven automation odnotowują wymierne korzyści: redukcję kosztów operacyjnych, przyspieszenie realizacji zadań oraz odciążenie pracowników od żmudnych obowiązków (pozwalając im skupić się na zadaniach kreatywnych). W efekcie transformacja cyfrowa przyspieszona przez automatyzację staje się faktem, dając organizacjom większą zwinność i produktywność.

    2. Analityka predykcyjna i data-driven decision making

    Analityka predykcyjna to kolejny kluczowy obszar, który powinien znaleźć się w strategii AI każdej dużej firmy. Dzięki wykorzystaniu uczenia maszynowego do analizy danych historycznych, organizacje mogą prognozować przyszłe trendy, zdarzenia i zapotrzebowanie z niespotykaną dotąd trafnością. Zamiast bazować wyłącznie na raportach opisujących przeszłość, firmy stosujące analitykę predykcyjną potrafią przewidywać np. wzrost popytu na produkt, ryzyko odejścia klienta czy awarię maszyny produkcyjnej, zanim do niej dojdzie. Tego typu AI w biznesie przekłada się na lepsze decyzje – proaktywne, oparte na danych, a nie intuicji.

    Rynek rozwiązań do analityki predykcyjnej dynamicznie rośnie (około 21% rocznie) i ma niemal podwoić swoją wartość z 9,5 mld USD w 2022 do ok. 17 mld USD w 2025​. Nic dziwnego – przedsiębiorstwa wdrażające predykcyjne modele AI odnotowują znaczące korzyści. W jednym z badań 64% firm wskazało poprawę efektywności i produktywności jako główną zaletę wykorzystania analityki predykcyjnej​. Przykładowo, sieci handlowe stosujące AI do prognozowania popytu mogą lepiej zarządzać zapasami (unikając braków towaru i nadmiarów), zaś banki przewidujące, którzy klienci mogą mieć trudności ze spłatą kredytu, potrafią wcześniej podjąć działania zaradcze. Analityka predykcyjna znajduje zastosowanie w każdej branży – od przemysłu (utrzymanie ruchu na podstawie przewidywania awarii maszyn), przez logistykę (optymalizacja łańcucha dostaw w oparciu o prognozy), po marketing (predykcja zachowań klientów i personalizacja oferty). Dla kadry zarządzającej oznacza to możliwość podejmowania lepszych decyzji szybciej. Rozwiązania AI dla biznesu w obszarze predykcji stają się zatem niezbędnym elementem strategii firm, które chcą być data-driven i wyprzedzać zmiany rynkowe zamiast jedynie na nie reagować.

    AI in prediction analysis

    3. Integracja AI z systemami CRM/ERP

    Kolejnym trendem kształtującym strategię AI 2025 jest wnikanie sztucznej inteligencji do kluczowych systemów biznesowych, takich jak CRM (zarządzanie relacjami z klientami) i ERP (planowanie zasobów przedsiębiorstwa). Zamiast traktować AI jako oddzielny eksperyment na uboczu, liderzy stawiają na integrację AI z istniejącymi platformami – tak, aby inteligencja maszynowa wspierała procesy sprzedaży, obsługi klienta, finansów czy operacji w ramach już używanych narzędzi. Dostawcy oprogramowania biznesowego dostrzegają tę potrzebę i coraz częściej oferują wbudowane moduły AI. Microsoft wprowadził np. Dynamics 365 Copilot oparty na GPT-4 do swojego systemu ERP/CRM, a SAP rozwija asystenta AI „Joule” w swoich aplikacjach biznesowych​.

    Korzyści z takiej integracji są ogromne. W systemach CRM zasilanych AI handlowcy otrzymują podpowiedzi, który lead jest najbardziej obiecujący (AI scoring), jakie produkty rekomendować klientowi, a nawet gotowe szkice maili ofertowych wygenerowane przez model językowy. Wsparcie AI oznacza też automatyczne logowanie interakcji z klientem czy analizę sentymentu wypowiedzi klienta (czy jest zadowolony, zirytowany?). Z kolei w systemach ERP AI pomaga optymalizować łańcuch dostaw (lepsze prognozy popytu i poziomu zapasów), wykrywać anomalie finansowe, usprawniać planowanie produkcji czy automatycznie porównywać oferty dostawców. Według analiz, ponad połowa firm wdrożyła już systemy CRM wzbogacone o AI – co więcej, firmy te są o 83% bardziej skłonne przekroczyć swoje cele sprzedażowe​ dzięki lepszemu wykorzystaniu danych o klientach. To pokazuje realny wpływ AI na core biznesu.

    Integracja AI z systemami klasy CRM/ERP często wymaga jednak fachowego podejścia – identyfikacji właściwych punktów, gdzie AI doda najwięcej wartości, dostosowania modeli do danych firmy oraz zapewnienia płynnej współpracy nowej „inteligencji” z istniejącymi procesami. Przykładem udanego wdrożenia może być projekt, gdzie TTMS wprowadziło system AI zintegrowany z Salesforce CRM, automatycznie analizujący zapytania ofertowe (RFP) i oceniający kluczowe kryteria​. Rozwiązanie to znacząco usprawniło proces ofertowania – AI przyspieszyła podejmowanie decyzji i alokację zasobów potrzebnych do przygotowania oferty​. To realny dowód, że dobrze zintegrowana AI potrafi odciążyć pracowników (tu: dział sprzedaży) od czasochłonnych analiz dokumentów i pozwala skupić się na budowaniu relacji z klientem. Podobne wdrożenia AI stają się udziałem coraz większej liczby firm – integrują one np. chatboty oparte na AI z systemami obsługi klienta, moduły uczenia maszynowego z systemami zarządzania zapasami czy AI w finansach, łączącą się z ERP w celu automatycznej klasyfikacji wydatków. W rezultacie strategia AI powinna zakładać bliskie splecenie AI z podstawową infrastrukturą IT firmy, tak aby inteligencja sztuczna przenikała procesy end-to-end zamiast działać w oderwaniu od nich.

    AI integration with CRM/ERP systems

    4. Generatywna AI – od ChatGPT po własne modele

    Generatywna sztuczna inteligencja zyskała ogromny rozgłos w latach 2023–2024 za sprawą modeli pokroju GPT-4 (ChatGPT), DALL-E czy innych systemów zdolnych do tworzenia nowych treści – tekstów, obrazów, kodu – na poziomie zbliżonym do ludzkiego. Dla dużych firm generatywna AI otwiera zupełnie nowe możliwości, dlatego powinna stać się ważnym elementem strategii na kolejne lata. Zastosowania są bardzo szerokie: automatyzacja tworzenia treści marketingowych, generowanie spersonalizowanych ofert dla klientów, tworzenie chatbotów potrafiących prowadzić naturalny dialog, wspomaganie działów R&D (np. generowanie i testowanie koncepcji nowych produktów), a nawet pomoc w programowaniu („sztuczny programista” podpowiadający kod). Już dziś 71% organizacji deklaruje regularne wykorzystanie generatywnej AI w co najmniej jednym obszarze działalności (wzrost z 65% na początku 2024 roku)​. Oznacza to, że generatywne modele bardzo szybko przeszły z fazy ciekawostki do praktycznych wdrożeń w biznesie.

    Dla liderów transformacji cyfrowej generatywna AI to podwójne wyzwanie: z jednej strony ogromna szansa na innowacje, z drugiej – potrzeba ostrożności i etyki (o czym za chwilę). Trendy wskazują, że w nadchodzących latach firmy będą budować własne modele generatywne wyspecjalizowane w ich domenie (np. model wygeneruje raport finansowy na podstawie danych firmy czy asystenta do obsługi wewnętrznej wiedzy korporacyjnej). Już teraz powstają rozwiązania GenAI-as-a-Service w chmurze, które pozwalają trenować modele na własnych danych z zapewnieniem poufności. Generatywna AI zmienia też zasady gry w obszarze obsługi klienta – chatbot nowej generacji może rozwiązać znacznie bardziej złożone problemy klientów, łącząc się przy tym z wewnętrznymi systemami firmy.

    Ważnym trendem jest także wykorzystanie AI generatywnej w narzędziach pracy – np. asystenci oparci na GPT pojawiają się w pakietach biurowych, ułatwiając tworzenie podsumowań, prezentacji czy analiz. Wpływa to na wydajność pracowników, niejako „podwajając” zasoby ludzkie: PwC przewiduje, że zastosowanie agentów AI może dać efekt równoważny podwojeniu liczebności zespołu dzięki automatyzacji zadań rutynowych​. Przykładem zastosowania generatywnej AI w dużej firmie może być case study TTMS z branży automotive, gdzie opracowano PoC z użyciem Azure OpenAI (GPT-4) do automatycznego przetwarzania zapytań o parametry pojazdów i kalkulacji rabatów​. Taka inteligentna aplikacja jest w stanie na podstawie opisu konfiguracji samochodu wygenerować optymalną ofertę cenową w kilka sekund – coś, co wcześniej wymagało ręcznej analizy cenników i tabel rabatowych. To pokazuje, że generatywna AI potrafi wspomóc sprzedaż i wycenę w czasie rzeczywistym, podnosząc tempo działania biznesu.

    artificial programmer AI

    Podsumowując, generative AI to trend, którego duże firmy nie mogą ignorować. W strategii AI na 2025+ warto uwzględnić pilotażowe wdrożenia narzędzi generatywnych tam, gdzie mogą one przynieść najszybszy zwrot (np. content marketing, obsługa klienta, wsparcie developerów). Należy jednocześnie zadbać o ramy zarządzania takimi modelami – od kontroli jakości generowanych treści po zabezpieczenia przed wygenerowaniem niepożądanych danych. Ci, którzy pierwsi nauczą się efektywnie wykorzystywać generatywną AI w swojej działalności, zyskają przewagę innowatorów i znacznie przyspieszą swoją transformację cyfrową.

    5. Etyka i odpowiedzialność AI

    Włączenie AI do strategii biznesowej na szeroką skalę wymaga równie dużej uwagi poświęconej kwestiom etycznym i odpowiedzialnemu rozwojowi AI. Im bardziej algorytmy decydują o ważnych sprawach (np. przyznawanie kredytu, diagnoza medyczna, selekcja CV kandydatów), tym głośniej padają pytania: czy AI podejmuje sprawiedliwe i niewykluczające decyzje? Czy jest przejrzysta i wytłumaczalna? Czy dane klientów są należycie chronione?. Liderzy dużych firm muszą zadbać, by AI działała zgodnie z zasadami etyki, inaczej narażają organizację na ryzyka prawne (nadchodzące regulacje, jak EU AI Act), reputacyjne i biznesowe.

    Na znaczeniu zyskuje koncepcja Responsible AI – czyli zestawu praktyk i zasad, które mają zapewnić, że rozwijane modele są pozbawione niepożądanych uprzedzeń, a ich działanie jest transparentne i zgodne z regulacjami. ROI z AI zależy od przyjęcia zasad Responsible AI – zauważają eksperci PwC​. Innymi słowy, inwestycje w AI przyniosą pełne korzyści tylko wtedy, gdy klienci i partnerzy obdarzą te systemy zaufaniem. Tymczasem sporo jest tu do zrobienia – choć 75% kadry kierowniczej uważa kwestie etyczne AI za bardzo ważne​, to jednocześnie tylko 40% klientów i obywateli ufa firmom co do odpowiedzialnego wykorzystywania przez nie AI​. Widzimy więc wyraźną lukę między intencjami a odbiorem społecznym. Organizacje muszą tę lukę zasypać poprzez konkretne działania: tworzenie kodeksów etycznych AI, powoływanie komisji nadzoru nad algorytmami, szkolenia z nieświadomych biasów danych, wdrażanie zasad AI Governance i monitorowanie modeli pod kątem ich decyzji.

    Na szczęście trend jest pozytywny – świadomość problemów rośnie. Aż 90% firm przyznało, że spotkało się z etycznym „potknięciem” AI w swojej działalności​ (np. stronnicze wskazania systemu rekrutacyjnego), co skłania do wypracowania lepszych praktyk. Wzrosła świadomość konkretnych zagadnień: np. 78% menedżerów jest już świadomych znaczenia wyjaśnialności AI (wobec 32% rok wcześniej)​. W strategii AI na 2025 rok i dalej należy więc uwzględnić komponent etyka AI by design – od początku planować wdrożenia tak, by były przejrzyste, sprawiedliwe i zgodne z prawem. Dotyczy to także wykorzystania danych: AI nie powinna naruszać prywatności ani zasad bezpieczeństwa informacji. Firmy, które postawią na odpowiedzialną AI, nie tylko zminimalizują ryzyko, ale zyskają przewagę – zbudują większe zaufanie klientów, a ich markę będzie wyróżniać wiarygodność. To wszystko przekłada się na długoterminową strategię AI zgodną z wartościami i zrównoważonym rozwojem biznesu.

    AI - legal and responsible

    6. Skalowalność wdrożeń AI w całej organizacji

    Ostatnim, lecz absolutnie kluczowym trendem (a zarazem wyzwaniem) jest skalowanie rozwiązań AI w ramach całej organizacji. Wiele dużych firm ma za sobą udane pilotażowe wdrożenia AI – prototypy modeli czy ograniczone rollouty np. w jednym dziale. Jednak aby AI naprawdę zmieniła biznes, nie może pozostać izolowanym eksperymentem. Strategia AI powinna obejmować plan przejścia od PoC (proof of concept) do produkcyjnego użycia na szeroką skalę, we wszystkich miejscach, gdzie technologia przynosi wartość. A z tym bywa problem – jak pokazują badania IDC, aż 88% projektów AI grzęźnie na etapie pilotażu i nie trafia do produkcji w skali całej firmy​. Innymi słowy, statystycznie tylko 4 inicjatywy AI na 33 udaje się z powodzeniem rozwinąć globalnie. Przyczyny bywają różne: brak klarownych celów biznesowych dla projektu, niedostateczna jakość danych lub infrastruktury, trudności z integracją rozwiązania z istniejącymi systemami, a także niedobór talentów (brak ekspertów od MLOps, data science)​.

    W 2025 roku duże organizacje kładą więc nacisk na skalowalność i utrzymanie AI. Pojęcia takie jak MLOps (Machine Learning Operations) zyskują na popularności – oznaczają zestaw praktyk i narzędzi pozwalających zarządzać cyklem życia modeli (od prototypu, przez testy, po wdrożenie i monitoring) podobnie jak zarządza się oprogramowaniem. Liderzy IT zdają sobie sprawę, że potrzebne jest odpowiednie zaplecze: chmurowe platformy AI, które umożliwią szybkie zwiększenie mocy obliczeniowych na potrzeby trenowania modeli, repozytoria funkcji i modeli do ponownego wykorzystania w różnych projektach, mechanizmy automatycznego skalowania aplikacji AI gdy rośnie liczba użytkowników lub danych. Firmy, którym udało się zbudować taką “fabrykę AI”, odnotowują dużo większy zwrot z inwestycji – osiągają efekt skali: jeśli jeden model oszczędza 1 mln zł, to wdrożenie podobnych modeli w 10 obszarach da już 10 mln zł korzyści. Badania McKinsey potwierdzają, że liderzy wdrożeń AI używają AI w średnio 3 funkcjach biznesowych, podczas gdy reszta ogranicza się do pojedynczych zastosowań​. W praktyce oznacza to, że firmy te potrafią powielać sukcesy – np. model AI sprawdzony w dziale sprzedaży łatwiej adaptują później w dziale obsługi posprzedażowej itd.

    Skalowalność to również zmiana kultury organizacyjnej – aby AI przeniknęła firmę, pracownicy muszą być przeszkoleni i przekonani do współpracy z AI, zespoły międzydziałowe powinny wspólnie realizować projekty (biznes + IT + analitycy), a zarząd powinien aktywnie patronować inicjatywom AI. Jak wskazuje McKinsey, zaangażowanie CEO w nadzór nad projektami AI silnie koreluje z uzyskaniem wyższego wpływu AI na wyniki firmy​. Innymi słowy, skalowanie AI to zadanie strategiczne, a nie tylko techniczne – wymaga wizji, inwestycji i koordynacji na poziomie całej organizacji.

    W strategii na lata 2025+ należy więc uwzględnić: plan budowy infrastruktury i kompetencji do skalowania AI, wybór odpowiednich platform (np. narzędzia do automatyzacji wdrożeń modeli), ustanowienie mierników sukcesu (KPI) dla projektów AI oraz procesu ich ewaluacji przed ekspansją. Firmy, które tego dokonają, zamienią pojedyncze wdrożenia AI w trwałą przewagę – AI stanie się częścią ich „DNA” organizacyjnego, a nie tylko dodatkiem. W rezultacie transformacja cyfrowa będzie napędzana na wszystkich poziomach przez rozwiązania AI dla biznesu – od operacji, przez analitykę, po interakcje z klientem.

    Gotowi na strategię AI 2025?

    Przyszłość dużych organizacji bez wątpienia będzie kształtowana przez powyższe trendy AI: od powszechnej automatyzacji procesów, przez predykcyjne podejście do danych, integrację AI w systemach, generatywne innowacje, po nacisk na etykę i skalowanie rozwiązań. Każdy z tych elementów powinien znaleźć odzwierciedlenie w Twojej strategii AI na nadchodzące lata. Zastosowanie ich w praktyce pozwoli usprawnić transformację cyfrową biznesu i utrzymać przewagę konkurencyjną w świecie po 2025 roku.

    Skontaktuj się z nami – eksperci TTMS pomogą Ci przełożyć te trendy na konkretne działania. Wspólnie opracujemy skuteczną strategię AI dla Twojej firmy i zrealizujemy wdrożenia AI na miarę jej potrzeb. Dzięki wsparciu doświadczonego partnera maksymalnie wykorzystasz potencjał sztucznej inteligencji, zapewniając swojej organizacji wzrost i innowacyjność w erze cyfrowej.

    Czym jest hiperautomatyzacja i czym różni się od tradycyjnej automatyzacji?

    Hiperautomatyzacja to zaawansowane podejście do automatyzacji procesów, które łączy technologie takie jak AI, uczenie maszynowe, robotyczną automatyzację procesów (RPA) i inteligentne przepływy pracy w celu zautomatyzowania jak największej liczby procesów biznesowych. W przeciwieństwie do tradycyjnej automatyzacji, która zazwyczaj koncentruje się na powtarzalnych zadaniach, hiperautomatyzacja integruje wiele systemów i źródeł danych w celu optymalizacji całych procesów end-to-end, umożliwiając ciągłe doskonalenie i większą skalowalność.

    Czym właściwie jest sztuczna inteligencja generatywna i w jaki sposób przedsiębiorstwa mogą ją wykorzystać?

    Generative AI odnosi się do modeli AI zdolnych do tworzenia nowej treści — takiej jak tekst, obrazy lub kod — na podstawie danych treningowych. Przykłady obejmują ChatGPT i DALL·E. Firmy wykorzystują generative AI do automatyzacji tworzenia treści, personalizacji komunikacji z klientami, wspierania rozwoju produktów i wspomagania inżynierii oprogramowania. Umożliwia szybszą innowację i poprawia wydajność w zakresie funkcji marketingu, sprzedaży i obsługi klienta.

    Co oznacza MLOps i dlaczego jest ważny?

    MLOps, skrót od Machine Learning Operations, to zestaw praktyk, których celem jest usprawnienie rozwoju, wdrażania, monitorowania i zarządzania modelami uczenia maszynowego. Podobnie jak DevOps w inżynierii oprogramowania, MLOps zapewnia, że ​​modele AI są stale integrowane, testowane i aktualizowane w sposób skalowalny i bezpieczny. Jest to niezbędne dla organizacji, które chcą przejść od pilotażowych projektów AI do implementacji na dużą skalę, gotowych do produkcji w różnych działach.

    Why is explainability in AI so important?

    Dlaczego wyjaśnialność jest tak ważna w sztucznej inteligencji?

    Jakie ryzyka wiążą się z wdrażaniem sztucznej inteligencji i jak można je ograniczyć?

    Wdrożenie AI wiąże się z ryzykiem, takim jak stronniczość danych, brak przejrzystości, obawy dotyczące prywatności danych i niezamierzone konsekwencje w podejmowaniu decyzji. Ryzyko to można złagodzić poprzez odpowiedzialne praktyki AI — w tym jasne ramy zarządzania, ciągły monitoring, wytyczne etyczne i edukację użytkowników. Zaangażowanie zespołów multidyscyplinarnych i zapewnienie nadzoru ludzkiego to również kluczowe strategie utrzymania kontroli nad procesami opartymi na AI.

    Wiktor Janicki Poland

    Transition Technologies MS świadczy usługi informatyczne terminowo, o wysokiej jakości i zgodnie z podpisaną umową. Polecamy firmę TTMS jako godnego zaufania i rzetelnego dostawcę usług IT oraz partnera wdrożeniowego Salesforce.

    Czytaj więcej
    Julien Guillot Schneider Electric

    TTMS od lat pomaga nam w zakresie konfiguracji i zarządzania urządzeniami zabezpieczającymi z wykorzystaniem różnych technologii. Ueługi świadczone przez TTMS są realizowane terminowo, i zgodnie z umową.

    Czytaj więcej

    Już dziś możemy pomóc Ci rosnąć

    Porozmawiajmy, jak możemy wesprzeć Twój biznes

    TTMC Contact person
    Monika Radomska

    Sales Manager