10 najlepszych narzędzi AI dla testerów w 2025 r.

Spis treści

    Sztuczna inteligencja zmienia oblicze testowania oprogramowania w 2025 r. Zespoły QA wykorzystują AI do przyspieszania tworzenia testów, poprawy ich dokładności oraz ograniczania żmudnej pracy związanej z utrzymaniem. Wyobraź sobie publikowanie nowych wersji oprogramowania z pełnym spokojem, wiedząc, że AI jako Twój współpilot wychwyciła krytyczne błędy i zoptymalizowała pokrycie testami. Od inteligentnych systemów test management, które potrafią pisać testy za Ciebie, po sprytne platformy automatyzacji z mechanizmami samonaprawy – narzędzia oparte na AI stają się niezbędne w każdej organizacji, która chce utrzymać wysoką jakość przy szybkim tempie dostarczania.

    Poniżej przedstawiamy ranking dziesięciu najlepszych globalnych narzędzi AI wspierających testowanie oprogramowania w 2025 r. Te zaawansowane rozwiązania – od platform do zarządzania testami opartych na AI po autonomiczne systemy automatyzacji – pomagają organizacjom szybciej i skuteczniej dostarczać niezawodne oprogramowanie. Sprawdźmy, jak każde z nich może uczynić testowanie bardziej inteligentnym i efektywnym.

    1. TTMS QATANA – narzędzie do zarządzania testami wspierane przez AI

    TTMS QATANA to stworzony przez testerów i dla testerów system do zarządzania testami oprogramowania oparty na sztucznej inteligencji. Platforma usprawnia cały cykl życia testów, wykorzystując AI do wspierania tworzenia przypadków testowych, planowania oraz utrzymania. Przykładowo, QATANA potrafi generować testy i automatycznie wybierać zestawy regresyjne na podstawie wymagań lub release notes, skracając czas projektowania testów nawet o około 30 procent. Zapewnia pełną widoczność testów manualnych i automatycznych w jednym miejscu, łącząc klasyczne podejścia QA z nowoczesnymi procesami automatyzacji. Kluczowe funkcje, takie jak inteligentne generowanie przypadków testowych, raportowanie w czasie rzeczywistym czy płynne integracje (np. z Jira i Playwright), czynią QATANĘ kompleksowym rozwiązaniem do testowania oprogramowania dla dużych organizacji. QATANA oferuje także bezpieczne wdrożenia on-premise oraz logi przygotowane pod audyt, dzięki czemu firmy z sektorów regulowanych mogą zachować zgodność, jednocześnie znacząco przyspieszając swoje procesy QA.

    Product Snapshot
    Nazwa produktu TTMS QATANA
    Cennik Licencja enterprise (kontakt z TTMS w celu wyceny)
    Kluczowe funkcje Wspomagane przez AI generowanie przypadków testowych; Zarządzanie pełnym cyklem życia testów; Hybrydowe przepływy testów manualnych i automatycznych; Dashboardy w czasie rzeczywistym; Opcja wdrożenia on-premise
    Główne zastosowania Zarządzanie testami i planowanie testów manualnych i automatycznych w dużych organizacjach
    Lokalizacja siedziby Warszawa, Polska
    Strona internetowa TTMS QATANA product page

    2. Applitools – platforma Visual AI do testów wizualnych

    Applitools to jedno z wiodących narzędzi do testowania wizualnego opartego na AI, znane z zaawansowanych algorytmów computer vision. Wykorzystuje Visual AI do automatycznego wykrywania anomalii UI oraz regresji na różnych przeglądarkach, urządzeniach i rozdzielczościach ekranu. Silnik Applitools (Eyes) naśladuje sposób, w jaki widzi człowiek, wychwytując różnice pikselowe oraz błędy wizualne, które tradycyjne skrypty często pomijają – znacząco ograniczając liczbę fałszywych negatywów i ręcznych weryfikacji. Zespoły QA integrują Applitools z istniejącymi frameworkami testowymi (Selenium, Cypress itp.), dzięki czemu łatwo dodają kroki walidacji wizualnej. Przeniesienie testów regresji wizualnej do AI pozwala firmom utrzymać spójny interfejs i UX bez spowalniania cykli wydawniczych.

    Product Snapshot
    Nazwa produktu Applitools Eyes
    Cennik Subskrypcja (dostępny darmowy trial i plan bezpłatny; plany enterprise dla dużych wolumenów)
    Kluczowe funkcje Porównywanie UI z wykorzystaniem AI; Testy międzyprzeglądarkowe i międzyurządzeniowe; Automatyczna analiza zrzutów ekranu; Integracja z frameworkami testowymi
    Główne zastosowania Testy regresji wizualnej oraz walidacja UI/UX w aplikacjach webowych i mobilnych
    Lokalizacja siedziby Kalifornia, USA
    Strona internetowa applitools.com

    3. Mabl – inteligentna automatyzacja testów dla CI/CD

    Mabl to narzędzie do automatyzacji testów oparte na sztucznej inteligencji, stworzone z myślą o zespołach Agile i DevOps. Ta działająca w chmurze platforma oferuje low-code’owy interfejs do tworzenia testów funkcjonalnych, a jednocześnie wykorzystuje machine learning do ich automatycznego utrzymywania i ulepszania w czasie. Inteligentny mechanizm auto-healing sprawia, że testy dostosowują się do drobnych zmian w UI, co znacząco ogranicza flaky tests i obniża koszty utrzymania. Mabl udostępnia również funkcje wykrywania anomalii wizualnych oraz analizy wydajności, dzięki czemu testerzy szybciej identyfikują problemy, takie jak zmiany layoutu lub wolne działanie aplikacji. Bezpośrednia integracja z pipeline’ami CI/CD umożliwia continuous testing poprzez uruchamianie stabilnych, inteligentnych zestawów testowych przy każdym wdrożeniu – co pozwala firmom szybciej wykrywać błędy i dostarczać oprogramowanie wyższej jakości.

    Product Snapshot
    Nazwa produktu Mabl
    Cennik Subskrypcje warstwowe (dostępny darmowy trial)
    Kluczowe funkcje Low-code’owe tworzenie testów; Samonaprawiające się skrypty; Wykrywanie anomalii (wydajnościowych i wizualnych); Natywna integracja CI/CD
    Główne zastosowania Testy regresyjne i continuous testing dla aplikacji webowych w środowiskach Agile/DevOps
    Lokalizacja siedziby Boston, Massachusetts, USA
    Strona internetowa mabl.com

    4. Katalon Studio – platforma all-in-one z obsługą AI

    Katalon Studio to popularna, kompleksowa platforma do automatyzacji testów, która wzbogaciła swoje możliwości o funkcje AI, zwiększając efektywność pracy zespołów QA. Obsługuje testy webowe, mobilne, API oraz desktopowe w jednym środowisku, oferując zarówno tworzenie testów bez kodu (przez record-and-playback lub podejście keyword-driven), jak i możliwość rozbudowy skryptów przez bardziej zaawansowanych użytkowników. Funkcje AI Katalona obejmują self-healing locators, które automatycznie aktualizują uszkodzone odniesienia do elementów, oraz inteligentne sugestie usprawniające przypadki testowe. Dzięki temu zespoły mogą znacząco ograniczyć nakład pracy związany z utrzymaniem testów, zwłaszcza gdy aplikacja dynamicznie się rozwija. Bogata biblioteka wbudowanych słów kluczowych i intuicyjny interfejs sprawiają, że Katalon Studio pozwala szybko wdrożyć testy funkcjonalne i regresyjne, oferując wszechstronne rozwiązanie do testowania oprogramowania dla zespołów w każdej skali.

    Product Snapshot
    Nazwa produktu Katalon Studio
    Cennik Freemium (wersja community bezpłatna; licencja enterprise z pełnym zakresem funkcji)
    Kluczowe funkcje Record-and-playback; Biblioteka słów kluczowych; Self-healing locators; Obsługa testów API i mobilnych
    Główne zastosowania Automatyzacja testów funkcjonalnych (web, API, mobile) przy minimalnym wymaganym kodowaniu
    Lokalizacja siedziby Atlanta, Georgia, USA
    Strona internetowa katalon.com

    5. Testim – automatyzacja testów z wykorzystaniem AI od Tricentis

    Testim wykorzystuje machine learning do uproszczenia end-to-end testów UI. Obecnie jako część Tricentis, Testim oferuje hybrydowe podejście do tworzenia testów: testerzy mogą pisać skrypty lub korzystać z narzędzia codeless recorder, podczas gdy AI platformy zajmuje się najtrudniejszym etapem, czyli identyfikacją elementów. Oparte na ML inteligentne lokatory automatycznie rozpoznają i aktualizują elementy UI, dzięki czemu testy automatyczne są znacznie bardziej odporne na zmiany w interfejsie. Testim zapewnia także mechanizm samonaprawy, który ogranicza flaky tests – gdy UI aplikacji ulega zmianie, testy często dostosowują się bez potrzeby ręcznej ingerencji. Zespoły korzystające z Testim mogą szybko tworzyć testy i mieć pewność, że pozostaną one stabilne w dłuższej perspektywie, co przyspiesza cykle wydawnicze i obniża koszty utrzymania.

    Product Snapshot
    Nazwa produktu Tricentis Testim
    Cennik Dostępny darmowy trial; subskrypcje enterprise oferowane przez Tricentis
    Kluczowe funkcje Lokatory elementów sterowane AI; Tworzenie testów przez record lub kodowanie; Samonaprawiające się skrypty; Integracja z narzędziami CI
    Główne zastosowania End-to-end testy aplikacji webowych z inteligentnym utrzymaniem (redukcja flaky tests)
    Lokalizacja siedziby Austin, Teksas, USA (Tricentis)
    Strona internetowa testim.io

    6. ACCELQ – bezkodowa automatyzacja testów z AI

    ACCELQ to platforma do automatyzacji testów bez konieczności pisania kodu, która wykorzystuje sztuczną inteligencję do szybszego projektowania i utrzymania testów. Umożliwia testerom tworzenie przypadków testowych w zwykłym języku angielskim, a system automatycznie przekształca je w wykonywalne testy, bez potrzeby kodowania. Silnik AI ACCELQ potrafi również sugerować i generować scenariusze testowe bezpośrednio na podstawie wymagań lub user stories, dzięki czemu kluczowe ścieżki użytkownika są zawsze pokryte. Dzięki mechanizmom self-healing platforma dynamicznie aktualizuje testy w odpowiedzi na zmiany w aplikacji, co znacząco zmniejsza obciążenie związane z utrzymaniem automatyzacji. ACCELQ obsługuje testowanie webowe, API, a nawet systemów legacy w jednym narzędziu, umożliwiając continuous testing w środowiskach Agile. Dla firm oznacza to szybsze cykle testowe oraz bardziej niezawodną automatyzację, która skaluje się wraz z tempem rozwoju oprogramowania.

    Product Snapshot
    Nazwa produktu ACCELQ
    Cennik Subskrypcja (plany niestandardowe; darmowy trial na życzenie)
    Kluczowe funkcje Tworzenie testów w języku naturalnym; Testy generowane przez AI; Samonaprawiające się skrypty; Zunifikowane testy web i API
    Główne zastosowania Automatyzacja continuous testing w Agile/DevOps (web i API) przy minimalnym kodowaniu
    Lokalizacja siedziby Dallas, Teksas, USA
    Strona internetowa accelq.com

    7. Functionize – autonomiczne testowanie z wykorzystaniem NLP

    Functionize to platforma testowa oparta na sztucznej inteligencji, która wykorzystuje zaawansowane machine learning oraz NLP (przetwarzanie języka naturalnego) do tworzenia i wykonywania testów. Testerzy mogą opisać scenariusze w zwykłym języku angielskim, a chmurowy system Functionize interpretuje poszczególne kroki i przekształca je w zautomatyzowane testy. Mechanizmy adaptacyjnego uczenia sprawiają, że platforma obserwuje zachowanie aplikacji w czasie – jeśli UI lub przepływ działania ulegną zmianie, Functionize potrafi automatycznie dostosować kroki testowe, co znacząco zmniejsza nakład pracy związany z utrzymaniem. Narzędzie oferuje również zaawansowane analizy i diagnostykę niepowodzeń zasilane AI, pomagając zespołom szybciej znaleźć przyczyny błędów. Jako rozwiązanie do testowania oprogramowania klasy enterprise Functionize umożliwia automatyzację złożonych testów end-to-end bez pisania kodu, przyspieszając cykle testowe przy zachowaniu wysokiej jakości.

    Product Snapshot
    Nazwa produktu Functionize
    Cennik Cennik enterprise (wycena indywidualna; dostępne demo)
    Kluczowe funkcje Tworzenie testów oparte na NLP; Utrzymanie oparte na ML; Wykonywanie testów w chmurze na dużą skalę; Szczegółowe analityki AI dotyczące błędów
    Główne zastosowania Autonomiczne testy aplikacji webowych oraz automatyzacja złożonych workflow przy minimalnym kodowaniu
    Lokalizacja siedziby San Francisco, Kalifornia, USA
    Strona internetowa functionize.com

    8. LambdaTest – testowanie międzyprzeglądarkowe wspierane przez AI

    LambdaTest to platforma testowa działająca w chmurze, znana z bardzo szerokiego wsparcia przeglądarek i urządzeń, a od 2025 r. dodatkowo wzbogacona o funkcje AI. LambdaTest wprowadził inteligentnego asystenta „Kane AI”, który pomaga generować i wykonywać testy przy użyciu języka naturalnego. Oznacza to, że testerzy mogą poprosić platformę o stworzenie testów dla konkretnych ścieżek użytkownika, a AI automatycznie wygeneruje odpowiednie skrypty i uruchomi je w wielu przeglądarkach. Infrastruktura LambdaTest zapewnia dostęp na żądanie do prawdziwych przeglądarek i urządzeń mobilnych, a AI jako współpilot optymalizuje wykonywanie testów, identyfikując potencjalne punkty awarii. Połączenie solidnej chmurowej infrastruktury do testów międzyprzeglądarkowych z AI generującą testy oraz mechanizmami samonaprawy pozwala zespołom utrzymać wysoką kompatybilność i jakość oprogramowania przy znacznie mniejszym nakładzie pracy manualnej.

    Product Snapshot
    Nazwa produktu LambdaTest (z Kane AI)
    Cennik Model freemium (dostępny darmowy plan; płatne plany z rozszerzonymi funkcjami)
    Kluczowe funkcje Laboratorium przeglądarek/urządzeń w chmurze; Testy generowane przez AI; Inteligentne wykonywanie testów i debugowanie; Integracja z CI/CD
    Główne zastosowania Testy kompatybilności między przeglądarkami z inteligentnym generowaniem i utrzymaniem testów
    Lokalizacja siedziby San Francisco, Kalifornia, USA
    Strona internetowa lambdatest.com

    9. Testsigma – open source’owa automatyzacja testów z AI

    Testsigma to open source’owa platforma do automatyzacji testów, która integruje funkcje AI, aby ułatwić tworzenie i utrzymanie testów. Umożliwia testerom pisanie kroków testowych w prostym języku angielskim, a platforma automatycznie przekształca je w wykonywalne skrypty dla testów webowych, mobilnych lub API. Funkcje AI Testsigmy obejmują mechanizmy samonaprawy (automatyczną aktualizację lokatorów po zmianach w UI) oraz sugestie kolejnych możliwych kroków testowych, co pomaga poszerzać pokrycie. Dzięki modelowi open source (z opcjonalną wersją cloud), narzędzie rozwija się dzięki aktywnej społeczności i jest opłacalne kosztowo, co przyciąga zespoły o ograniczonych budżetach, które nadal oczekują zaawansowanych możliwości. Testsigma jest idealna dla organizacji poszukujących rozwiązania do testowania oprogramowania, które łączy elastyczność open source z wygodą automatyzacji opartej na AI.

    Product Snapshot
    Nazwa produktu Testsigma
    Cennik Open source (bezpłatne); plany Cloud SaaS z obsługą enterprise
    Kluczowe funkcje Projektowanie testów w prostym angielskim; Testy web, mobile i API; Mechanizmy samonaprawy z AI; Rozszerzenia tworzone przez społeczność
    Główne zastosowania Automatyczne testy regresyjne dla web/mobile/API przy minimalnym kodowaniu, szczególnie dla mniejszych zespołów
    Lokalizacja siedziby San Francisco, Kalifornia, USA
    Strona internetowa testsigma.com

    10. testRigor – generatywna AI do testów end-to-end

    testRigor to narzędzie nowej generacji do automatyzacji testów, które wykorzystuje generatywną AI do tworzenia i utrzymywania testów na podstawie opisów w prostym języku angielskim. Testerzy mogą po prostu opisać przebieg użytkownika (np. „Zaloguj się, dodaj produkt do koszyka i dokonaj zakupu”), a silnik testRigor automatycznie wygeneruje wykonywalny test end-to-end dla aplikacji webowych lub mobilnych. Platforma została zaprojektowana tak, aby maksymalnie ograniczyć potrzebę kodowania – AI rozumie intencje na wysokim poziomie i zajmuje się wszystkimi technicznymi szczegółami. Tworzone w testRigor skrypty są wyjątkowo adaptacyjne: jeśli interfejs aplikacji ulegnie zmianie, wbudowana AI samonaprawy dostosuje kroki testowe, znacząco redukując konieczność ręcznych aktualizacji. Przekształcając scenariusze manualne w automatyczne w bardzo krótkim czasie, testRigor pozwala organizacjom znacząco zwiększyć pokrycie testami i szybciej wykrywać błędy, jednocześnie umożliwiając osobom nietechnicznym aktywny udział w automatyzacji.

    Product Snapshot
    Nazwa produktu testRigor
    Cennik Freemium (bezpłatny plan community z ograniczeniami); plany biznesowe na poziomie enterprise
    Kluczowe funkcje Generatywne tworzenie testów na podstawie języka angielskiego; Wykonywanie testów z samonaprawą; Testy end-to-end dla web i mobile; Podejście no-code
    Główne zastosowania Automatyzacja złożonych scenariuszy end-to-end i ścieżek użytkownika bez kodowania, z wykorzystaniem AI do obsługi szczegółów
    Lokalizacja siedziby San Francisco, Kalifornia, USA
    Strona internetowa testrigor.com

    Gotowy, aby wykorzystać AI w swoich testach?

    Wzrost znaczenia AI w testowaniu oprogramowania sprawia, że zespoły QA mogą osiągać więcej w krótszym czasie – od inteligentnego zarządzania testami po samonaprawiające się zestawy testów. Wybór odpowiedniego narzędzia AI może znacząco podnieść jakość produktu oraz przyspieszyć tempo dostarczania. Jeśli chcesz doświadczyć tych korzyści w praktyce, rozważ skorzystanie z rozwiązania TTMS opartego na sztucznej inteligencji. Dzięki TTMS QATANA zyskujesz nowoczesne narzędzie do zarządzania testami, które łączy efektywność napędzaną AI z solidnym podejściem do jakości. Nie zostawaj w tyle w rewolucji AI w testowaniu – daj swojemu zespołowi narzędzia, które realnie transformują proces QA już dziś. Skontaktuj się z nami!

    W jaki sposób AI poprawia dokładność testowania oprogramowania w porównaniu z metodami tradycyjnymi?

    AI zwiększa dokładność testowania, analizując ogromne zbiory danych i identyfikując wzorce, których testerzy mogliby nie zauważyć. Modele machine learning potrafią wykrywać anomalie, przewidywać obszary ryzyka oraz wskazywać elementy aplikacji wymagające szczególnej uwagi na wczesnym etapie cyklu. Sztuczna inteligencja redukuje także błędy ludzkie dzięki automatyzacji powtarzalnych zadań i zachowaniu pełnej powtarzalności testów. W miarę gromadzenia danych historycznych AI staje się coraz skuteczniejsza, pomagając wykrywać defekty szybciej i podnosić ogólną jakość produktu.

    Czy narzędzia do testowania oparte na AI mogą całkowicie zastąpić testy manualne w 2025 r.?

    Mimo że AI znacząco przyspiesza automatyzację, nie eliminuje całkowicie potrzeby testów manualnych. Testy eksploracyjne, ocena użyteczności oraz obszary wymagające ludzkiego osądu nadal pozostają domeną doświadczonych testerów. AI najlepiej sprawdza się w zadaniach powtarzalnych, opartych na danych i wymagających dużego pokrycia regresyjnego. W 2025 r. najbardziej efektywne podejścia do QA łączą automatyzację wspieraną przez AI z wiedzą ekspercką testerów, co pozwala osiągnąć zarówno wysoką efektywność, jak i realną kontrolę jakości.

    Jakie umiejętności są potrzebne testerom, aby skutecznie korzystać z narzędzi testowych opartych na AI?

    Testerzy nie muszą stać się specjalistami od data science, jednak powinni rozumieć podstawy działania narzędzi AI. W praktyce przydaje się umiejętność interpretowania wyników generowanych przez AI, projektowania wysokiej jakości scenariuszy oraz znajomość zasad automatyzacji. Wsparciem są też kompetencje techniczne, takie jak praca z API, CI/CD czy systemami kontroli wersji. Testerzy, którzy potrafią łączyć wiedzę domenową z możliwościami AI, zyskują realną przewagę w projektach.

    Jak organizacje mogą mierzyć zwrot z inwestycji (ROI) z wdrożenia rozwiązań AI w testowaniu?

    Aby ocenić ROI, firmy powinny monitorować takie wskaźniki jak wzrost pokrycia testami, skrócenie czasu wykonania testów, poprawa wykrywalności defektów oraz redukcja nakładu pracy na utrzymanie. AI często zmniejsza liczbę flaky tests i przyspiesza regresję, co pozwala dostarczać oprogramowanie częściej i z mniejszą liczbą błędów. Ważne są również efekty pośrednie: odciążenie testerów od monotonnnych zadań, wzrost ich efektywności oraz lepsze zarządzanie ryzykiem. Po kilku iteracjach wdrożeniowych korzyści te zwykle wyraźnie przewyższają koszty implementacji narzędzi AI.

    Wiktor Janicki

    Transition Technologies MS świadczy usługi informatyczne terminowo, o wysokiej jakości i zgodnie z podpisaną umową. Polecamy firmę TTMS jako godnego zaufania i rzetelnego dostawcę usług IT oraz partnera wdrożeniowego Salesforce.

    Czytaj więcej
    Julien Guillot Schneider Electric

    TTMS od lat pomaga nam w zakresie konfiguracji i zarządzania urządzeniami zabezpieczającymi z wykorzystaniem różnych technologii. Ueługi świadczone przez TTMS są realizowane terminowo, i zgodnie z umową.

    Czytaj więcej

    Już dziś możemy pomóc Ci rosnąć

    Porozmawiajmy, jak możemy wesprzeć Twój biznes

    TTMC Contact person
    Monika Radomska

    Sales Manager