First, some statistics…
Digital transformation is gaining momentum – in 2025, as many as 94% of organizations are conducting various types of digital initiatives. Artificial intelligence (AI) is increasingly at the center of these activities. Over three-quarters of companies already use AI in at least one area of their operations, and 83% of enterprises consider AI to be a strategic priority. AI is not a futuristic curiosity, but a key factor of competitive advantage. What AI trends should be included in the strategy of organizations planning development after 2025? Below we present the most important of them, especially important for leaders of digital transformation in large companies.
Global AI software revenues are growing exponentially, signaling massive business investment in AI. The rapid growth of the AI market is accompanied by a rapidly growing number of implementations in companies – according to McKinsey research, 78% of organizations use AI in at least one business function. For management, this means that AI must be included in long-term strategies to stay ahead of the competition. More and more leaders are recognizing this fact – almost half declare that AI is already fully integrated into the strategic plans of their business. A strategic approach to AI, based on current trends, is therefore becoming a condition for successful digital transformation after 2025.

1. Process automation (hyperautomation)
Business process automation using AI is one of the pillars of digital transformation. In the era of striving for operational excellence, companies reach for the so-called hyperautomation – combining many technologies (AI, machine learning, RPA) to automate everything possible. According to Gartner, hyperautomation is a priority for 90% of large enterprises, which shows how important it has become to streamline processes using AI. Both routine back-office tasks (e.g. document processing, reporting) and customer interactions (chatbots, voicebots) can be automated.
For example, AI algorithms can analyze documents and extract data from them in a matter of seconds – something that used to take employees hours to do manually. RPA systems combined with AI can independently handle financial, HR, and logistics processes, learning from data and improving their operation over time. 70% of organizations indicate simplifying workflow and eliminating manual activities as a top priority in their digital strategy, and AI fits perfectly into these goals. What’s more, it is estimated that by 2026, 30% of enterprises will automate more than half of their network processes (up from <10% in 2023) – proof that the scale of automation is growing rapidly. Companies investing in AI-driven automation note tangible benefits: reduced operating costs, faster task execution, and relieving employees of tedious duties (allowing them to focus on creative tasks). As a result, digital transformation accelerated by automation is becoming a fact, giving organizations greater agility and productivity.
2. Predictive analytics and data-driven decision making
Predictive analytics is another key area that should be part of every large company’s AI strategy. By using machine learning to analyze historical data, organizations can predict future trends, events, and demand with unprecedented accuracy. Instead of relying solely on reports describing the past, companies using predictive analytics can predict, for example, an increase in product demand, the risk of customer churn, or a production machine failure before it happens. This type of AI in business translates into better decisions—proactive, based on data, not intuition.
The market for predictive analytics solutions is growing rapidly (around 21% per year) and is expected to almost double in value from USD 9.5 billion in 2022 to around USD 17 billion in 2025. No wonder – companies implementing predictive AI models are seeing significant benefits. In one study, 64% of companies indicated improved efficiency and productivity as the main advantage of using predictive analytics. For example, retail chains using AI to forecast demand can better manage inventory (avoiding shortages and surpluses), while banks that predict which customers may have difficulty repaying their loans are able to take remedial action earlier. Predictive analytics is used in every industry – from industry (maintenance of traffic based on predicting machine failures), through logistics (optimization of the supply chain based on forecasts), to marketing (predicting customer behavior and personalizing the offer). For management, this means the ability to make better decisions faster. AI solutions for business in the area of prediction are therefore becoming an essential element of the strategy of companies that want to be data-driven and stay ahead of market changes instead of just reacting to them.

3. AI integration with CRM/ERP systems
Another trend shaping AI 2025 is the penetration of AI into key business systems, such as CRM (customer relationship management) and ERP (enterprise resource planning). Instead of treating AI as a separate experiment on the sidelines, leaders are focusing on integrating AI with existing platforms—so that machine intelligence supports sales, customer service, finance, and operations processes within existing tools. Business software vendors are recognizing this need and are increasingly offering built-in AI modules. Microsoft, for example, has introduced GPT-4-based Dynamics 365 Copilot into its ERP/CRM system, and SAP is developing the AI assistant “Joule” in its business applications.
The benefits of such integration are enormous. In AI-powered CRM systems, salespeople receive suggestions on which lead is the most promising (AI scoring), which products to recommend to the customer, and even ready-made drafts of offer emails generated by the language model. AI support also means automatic logging of customer interactions or analysis of the sentiment of the customer’s statements (are they satisfied or irritated?). In turn, in ERP systems, AI helps to optimize the supply chain (better demand and inventory level forecasts), detect financial anomalies, improve production planning or automatically compare supplier offers. According to analyses, more than half of companies have already implemented AI-enhanced CRM systems – what’s more, these companies are 83% more likely to exceed their sales goals thanks to better use of customer data. This shows the real impact of AI on the core of the business.
Integrating AI with CRM/ERP systems often requires a professional approach – identifying the right points where AI will add the most value, adapting models to company data and ensuring smooth cooperation of the new “intelligence” with existing processes. An example of a successful implementation is a project where TTMS introduced an AI system integrated with Salesforce CRM, automatically analyzing requests for proposals (RFP) and assessing key criteria. This solution significantly improved the bidding process – AI accelerated decision-making and allocation of resources needed to prepare the offer. This is real proof that well-integrated AI can relieve employees (here: the sales department) from time-consuming document analyses and allows them to focus on building relationships with the customer. Similar AI implementations are becoming a part of an increasing number of companies – they integrate, for example, AI-based chatbots with customer service systems, machine learning modules with inventory management systems or AI in finance, connecting with ERP to automatically classify expenses. As a result, an AI strategy should closely intertwine AI with a company’s core IT infrastructure, so that AI permeates end-to-end processes rather than operating in isolation from them.

4. Generative AI – from ChatGPT to custom models
Generative AI has gained a lot of publicity in 2023-2024 thanks to models like GPT-4 (ChatGPT), DALL-E and other systems capable of creating new content – texts, images, code – at a level close to human. For large companies, generative AI opens up completely new possibilities, which is why it should become an important element of the strategy for the coming years. The applications are very wide: automation of creating marketing content, generating personalized offers for customers, creating chatbots that can conduct natural dialogue, supporting R&D departments (e.g. generating and testing new product concepts), and even assistance in programming (an “artificial programmer” suggesting code). Today, 71% of organizations declare regular use of generative AI in at least one area of activity (up from 65% at the beginning of 2024). This means that generative models have very quickly moved from the phase of curiosity to practical implementations in business.
For leaders of digital transformation, generative AI is a double challenge: on the one hand, a huge opportunity for innovation, and on the other – the need for caution and ethics (more on that in a moment). Trends indicate that in the coming years, companies will build their own generative models specialized in their domain (e.g. a model that will generate a financial report based on company data or an assistant to handle internal corporate knowledge). GenAI-as-a-Service solutions are already being created in the cloud, which allow models to be trained on their own data while ensuring confidentiality. Generative AI is also changing the rules of the game in the area of customer service – a new generation chatbot can solve much more complex customer problems, while connecting to the company’s internal systems.
Another important trend is the use of generative AI in work tools – for example, GPT-based assistants appear in office suites, facilitating the creation of summaries, presentations and analyses. This affects employee efficiency, in a way “doubling” human resources: PwC predicts that the use of AI agents can give an effect equivalent to doubling the size of the team thanks to the automation of routine tasks. An example of the use of generative AI in a large company can be the TTMS case study from the automotive industry, where a PoC was developed using Azure OpenAI (GPT-4) to automatically process vehicle parameter queries and calculate discounts. Such an intelligent application is able to generate an optimal price offer in a few seconds based on the description of the car configuration – something that previously required manual analysis of price lists and discount tables. This shows that generative AI can support sales and pricing in real time, increasing the pace of business operations.

In summary, generative AI is a trend that large companies cannot ignore. The AI strategy for 2025+ should include pilot implementations of generative tools where they can bring the fastest return (e.g. content marketing, customer service, developer support). At the same time, it is necessary to take care of the framework for managing such models – from quality control of generated content to protection against the generation of unwanted data. Those who learn to use generative AI effectively in their business first will gain an innovator’s advantage and significantly accelerate their digital transformation.
5. AI Ethics and Responsibility
The integration of AI into business strategy on a large scale requires an equally large attention to ethical issues and responsible AI development. The more algorithms decide on important matters (e.g. granting credit, medical diagnosis, CV selection of candidates), the louder the questions are asked: does AI make fair and non-exclusive decisions? Is it transparent and explainable? Is customer data adequately protected? Leaders of large companies must ensure that AI operates in accordance with ethical principles, otherwise they expose the organization to legal (upcoming regulations, such as the EU AI Act), reputational and business risks.
The concept of Responsible AI is gaining in importance – a set of practices and principles that are supposed to ensure that the developed models are free from undesirable biases, and their operation is transparent and compliant with regulations. The ROI from AI depends on the adoption of the principles of Responsible AI – PwC experts note. In other words, investments in AI will bring full benefits only if customers and partners trust these systems. Meanwhile, there is a lot to be done here – although 75% of executives consider AI ethical issues to be very important, at the same time only 40% of customers and citizens trust companies to use AI responsibly. We see a clear gap between intentions and social perception. Organizations must fill this gap through specific actions: creating AI codes of ethics, establishing algorithm oversight committees, training on unconscious data biases, implementing AI Governance principles and monitoring models in terms of their decisions.
Fortunately, the trend is positive – awareness of the problems is growing. As many as 90% of companies admitted that they had encountered an ethical “slip” of AI in their operations (e.g. biased indications of the recruitment system), which encourages the development of better practices. Awareness of specific issues has increased: for example, 78% of managers are already aware of the importance of AI explainability (compared to 32% a year earlier). The AI strategy for 2025 and beyond should therefore include the AI ethics by design component – from the outset, implementations should be planned so that they are transparent, fair and legal. This also applies to the use of data: AI should not violate privacy or information security principles. Companies that choose responsible AI will not only minimize risk, but will also gain an advantage – they will build greater customer trust, and their brand will be distinguished by credibility. All this translates into a long-term AI strategy consistent with business values and sustainable development.

6. Scalability of AI implementations across the organization
The last but absolutely crucial trend (and challenge) is scaling AI solutions across the entire organization. Many large companies have successful AI pilot implementations behind them – prototypes of models or limited rollouts, e.g. in one department. However, for AI to truly change business, it cannot remain an isolated experiment. The AI strategy should include a plan to move from PoC (proof of concept) to production use on a large scale, in all places where the technology brings value. And this can be a problem – as IDC research shows, as many as 88% of AI projects get stuck at the pilot stage and do not go into production on a company-wide scale. In other words, statistically only 4 out of 33 AI initiatives manage to successfully develop globally. The reasons can be various: lack of clear business goals for the project, insufficient data or infrastructure quality, difficulties in integrating the solution with existing systems, as well as a shortage of talent (lack of MLOps, data science experts).
In 2025, large organizations are therefore focusing on AI scalability and maintenance. Concepts such as MLOps (Machine Learning Operations) are gaining popularity – they mean a set of practices and tools that allow you to manage the life cycle of models (from prototype, through testing, to implementation and monitoring) similarly to software management. IT leaders realize that the right resources are needed: cloud AI platforms that will allow for a rapid increase in computing power for model training, repositories of functions and models for reuse in various projects, mechanisms for automatic scaling of AI applications as the number of users or data grows. Companies that have managed to build such an “AI factory” note a much higher return on investment – they achieve the scale effect: if one model saves PLN 1 million, then implementing similar models in 10 areas will already give PLN 10 million in benefits. McKinsey research confirms that AI implementation leaders use AI in an average of 3 business functions, while the rest are limited to single applications. In practice, this means that these companies are able to replicate successes – for example, an AI model tested in the sales department can be more easily adapted later in the after-sales service department, etc.
Scalability also means changing the organizational culture – for AI to permeate the company, employees must be trained and convinced to work with AI, cross-departmental teams should jointly implement projects (business + IT + analysts), and the board should actively patronize AI initiatives. As McKinsey points out, the CEO’s involvement in overseeing AI projects strongly correlates with achieving a higher AI impact on the company’s results. In other words, scaling AI is a strategic task, not just a technical one – it requires vision, investment, and coordination across the entire organization.
The strategy for 2025+ should therefore include: a plan for building infrastructure and competencies for scaling AI, selecting appropriate platforms (e.g. tools for automating model implementations), establishing success metrics (KPIs) for AI projects and a process for evaluating them before expansion. Companies that do this will turn individual AI implementations into a lasting advantage – AI will become part of their organizational “DNA”, not just an add-on. As a result, digital transformation will be driven at all levels by AI solutions for business – from operations, through analytics, to customer interactions.
Ready for AI Strategy 2025?
The future of large organizations will undoubtedly be shaped by the above AI trends: from widespread process automation, through predictive data approach, AI integration in systems, generative innovation, to the emphasis on ethics and scaling solutions. Each of these elements should be reflected in your AI strategy for the coming years. Putting them into practice will allow you to streamline the digital transformation of your business and maintain a competitive advantage in the world after 2025.

Contact us – TTMS experts will help you translate these trends into specific actions. Together we will develop an effective AI strategy for your company and implement AI tailored to its needs. With the support of an experienced partner, you will maximize the potential of artificial intelligence, ensuring your organization’s growth and innovation in the digital era.
What is hyperautomation and how does it differ from traditional automation?
Hyperautomation is an advanced approach to process automation that combines technologies such as AI, machine learning, robotic process automation (RPA), and intelligent workflows to automate as many business processes as possible. Unlike traditional automation, which typically focuses on repetitive tasks, hyperautomation integrates multiple systems and data sources to optimize entire end-to-end processes, allowing for continuous improvement and greater scalability.
What exactly is generative AI and how can businesses use it?
Generative AI refers to AI models capable of creating new content — such as text, images, or code — based on training data. Examples include ChatGPT and DALL·E. Businesses use generative AI to automate content creation, personalize customer communication, support product development, and assist software engineering. It enables faster innovation and improves efficiency across marketing, sales, and customer support functions.
What does MLOps mean and why is it important?
MLOps, short for Machine Learning Operations, is a set of practices that aims to streamline the development, deployment, monitoring, and management of machine learning models. Similar to DevOps in software engineering, MLOps ensures that AI models are continuously integrated, tested, and updated in a scalable and secure way. It is essential for organizations that want to move from pilot AI projects to large-scale, production-ready implementations across departments.
Why is explainability in AI so important?
Explainability in AI refers to the ability to understand how and why an AI system made a specific decision. This is crucial in regulated industries like finance or healthcare, where transparency and accountability are required. Explainable AI builds trust among users and stakeholders and helps ensure that models are fair, reliable, and compliant with ethical and legal standards.
What are the risks of implementing AI, and how can they be mitigated?
AI implementation comes with risks such as data bias, lack of transparency, data privacy concerns, and unintended consequences in decision-making. These risks can be mitigated through responsible AI practices — including clear governance frameworks, continuous monitoring, ethical guidelines, and user education. Involving multidisciplinary teams and ensuring human oversight are also key strategies to maintain control over AI-driven processes.